Химические преобразователи солнечной энергии

Химические преобразователи солнечной энергии

Современная энергетика опирается главным образом на такие источники, в которых запасена солнечная энергия (СЭ). Прежде всего это ископаемые виды топлива, для образования которых требуются миллионы лет. В своей деятельности человечество с постоянно возрастающими темпами растрачивает их поистине гигантский запас.

Истощение месторождений нефти, угля и природного газа неизбежно, и, по различным оценкам, время, отпущенное на то, чтобы переключиться на альтернативные источники энергии (солнечную, океаническую, ветровую, вулканическую), составляет 100-150 лет.

Большой интерес также представляют поиски химических способов аккумулирования СЭ. Системы, аккумулирующие солнечную энергию, и требования к ним.

Диапазон использования солнечного излучения чрезвычайно широк.

Энергией Солнца питаются высоко температурные установки, концентрирующие поток лучей с помощью зеркал. В качестве аккумуляторов энергии в них используются как физические теплоносители, так и некоторые неорганические вещества, способные к циклическим реакциям термического разложениясинтеза (оксиды, гидраты, сульфаты, карбонаты). Устройства другого типа преобразуют энергию излучения в электрическую, тепловую или энергию химических реакций посредством фотофизических или фотохимических процессов. Среди фотохимических путей преобразования СЭ наиболее значимыми являются следующие: · Фотокаталитическое разложение воды под действием металлокомплексных соединений; · Создание «солнечных фотоэлектролизёров », основанных на фотоэлектронных переносах или фотогальваническом эффекте; · Фотосинтез - наиболее эффективный биохимический способ преобразования энергии Солнца.

Наряду с ними значительный интерес представляют химические системы, способные аккумулировать СЭ в виде энергии напряжения химических связей. Такие системы удовлетворять требованиям , которые относятся как к фотохромному реагенту А и продукту В, так и к параметрам процесса. А В+ Н. Основные требования сводятся следующему: · Реагент А должен поглощать свет в УФ и видимых частях спектра (400-650 нм), так как более 50% СЕ, достигающей Земли, распределено в области 300-700 нм.

Фотоизомер В, наоборот, не должен поглощать в этой области, чтобы избежать фотоинициирования обратной реакции. Во избежание потерь энергии оба компонента должны быть нелюминесцирующими ; · Обратная реакция должна иметь значительный тепловой эффект ( > 300 Дж/г); · Для длительного сохранения запасённой фотопродуктом В энергии активационный барьер термического перехода В А должен быть достаточно большим – порядка 100 кДж /моль; · Прямая фотохимическая реакция должна характеризоваться высоким квантовым выходом, обратная подвержена каталитическому ускорению или тепловому инициированию; · Прямой и обратный процессы должны характеризоваться высокими степенями превращения и отсутствием побочных продуктов; · Вещества А и В должны достаточно дешёвыми, доступными, нетоксичными, взрывобезопасными и химически устойчивыми по отношению к атмосферной влаге и воздуху. Среди органических систем, удовлетворяющих указанным выше условиям, наиболее важными являются следующие: · Валентная изомеризация нитрон – оксазиридин ; · Геометрическая (Е) ( Z ) изомеризация производных индиго; · Геометрическая изомеризация N – ацилированных аминов и нитрилов с последующей внутримолекулярной перегруппировкой; · Термически обратимая реакция фотодимеризации производных антрацена.

Циклические реакции фотораспада – термической рекомбинации свойственны и некоторым неорганическим системам, например фоторазложению нитрозилхлорида : NOCl NO + 1 /2 Cl² Основное преимущество органических систем перед неорганическими связано с возможностью широкого варьирования строения молекул с целью улучшения их спектральных характеристик как аккумуляторов и преобразователей СЭ. Система норборнадиен – квадрициклан . Исследования, проводимые в последние годы, указывают на перспективность использования систем, для которых характерна фотоинициируемая валентная изомеризация по типу (2 +2 ) – циклоприсоединения . В этих реакциях две – связи преобразуются в две – связи с образованием циклобутанового производного. Как правило, в подобных системах термодинамическое равновесие полностью смещено в сторону реагента.

Рассмотрим более детально один из наиболее перспективных объектов для такого рода превращений – норборнадиен ( бицикло [ 2.2.1 ] гепта – 2,5 – диен) и его производные.

Соединения норборнадиенового ряда могут быть достаточно легко синтезированы по реакции дневного синтеза.

Реагентами для получения норборнадиен производных являются крупнотоннажные продукты органического синтеза – циклопентадиен и ацетилен.

Норборнадиен – интересная и во многом уникальная молекула. Это редкий пример 1,4 – диеновых углеводородов, в которых такое расположение двойных связей является наиболее термодинамически устойчивым.

Использование сенсиблизаторов . Фотопревращение незамещённого норборнадиена в квадрициклан характеризуется низким квантовым выходом, который, однако, может быть значительно повышен при использовании сенсибилизаторов.

Наилучшие результаты получены при использовании солей меди или фенилкетонов . Однако и в этих системах имеются недостатки: во-первых, они “ работают ” только в УФ – области спектра; во-вторых, комплексы Cu(|) окисляются до соединений Cu(||) , не проявляющих фотоактивности , а кетоны химически взаимодействуют с норборнадиеном при облучении, образуя продукты фотоприсоединения. Эти причины затрудняют практическое использование такого рода сенсибилизаторов.

Заключение.

Глобальная экологическая проблема предъявляет к химико – технологическим процессам всё более жёсткие требования. В этих условиях фотохимические методы, которые позволяют весьма избирательно подводить энергию и использовать её в химических превращениях, могут сыграть важную роль. Свет представляет собой как бы безынерционный химический реагент, не дающий отходов. Тем не менее в настоящее время фотохимические процессы в крупномасштабном производстве имеют подчинённое значение прежде всего потому, что ещё не решены сложные сопутствующие технические проблемы. Всё сказанное выше в полной мере относится к системе норборнадиен – квадрициклан . Её практическая ценность очевидна. В некоторых развитых странах уже проводятся разработки малогабаритных экспериментальных установок, работающих на норборнадиене , для обогрева зданий, садовых домиков, теплиц.

Однако на пути крупномасштабного использования тепловой энергии, выделяющейся при каталитическом превращении квадрициклана в норборнадиен , имеются препятствия экономического характера. Так, в настоящее время стоимость тепла (в виде водяного пара), получаемого этим способом, в 50 – 100 раз превышает аналогичные показатели для традиционных методов.

Необходима дальнейшая модификация этих систем.

Основные направления усовершенствования: увеличение числа рабочих циклов до 10000 и выше, повышение квантового выхода и конверсии норборнадиена в каждом цикле, а также удешевление синтеза производных норборнадиена , обладающих подходящими спектральными характеристиками. Тем не менее создание малогабаритных установок может быть оправданно и сегодня – для солнечных регионов, удалённых от других источников энергии, для искусственных спутников.

 

Категории

Технология

История экономических учений

Менеджмент (Теория управления и организации)

Философия

Химия

Административное право

Международные экономические и валютно-кредитные отношения

Математика

Бухгалтерский учет

Микроэкономика, экономика предприятия, предпринимательство

Радиоэлектроника

Физика

Теория систем управления

Маркетинг, товароведение, реклама

Банковское дело и кредитование

Право

Политология, Политистория

Охрана природы, Экология, Природопользование

Педагогика

Психология, Общение, Человек

Медицина

Ветеринария

Теория государства и права

Физкультура и Спорт

Сельское хозяйство

Уголовное право

Техника

Программирование, Базы данных

Программное обеспечение

Биология

Уголовное и уголовно-исполнительное право

Архитектура

История

Здоровье

Религия

Социология

Материаловедение

Криминалистика и криминология

Государственное регулирование, Таможня, Налоги

Экономическая теория, политэкономия, макроэкономика

Металлургия

Биржевое дело

Компьютерные сети

Уголовный процесс

Римское право

География, Экономическая география

Разное

Ценные бумаги

История государства и права зарубежных стран

Литература, Лингвистика

Историческая личность

Военная кафедра

История отечественного государства и права

Транспорт

Авиация

Астрономия

Космонавтика

Гражданская оборона

Подобные работы

Хром

echo "Побочную подгруппу VI группы составляют следующие элементы — хром Cr, молибден Мо и вольфрам W. Хром возглавляет побочную подгруппу 4 группы. Его электронная формула +24 Cr 1s 2 |2s 2 2p 6 |3s 2

Азотная кислота

echo "Вращение группы ОН относительно NO 2 затруднено. В целом молекулу можно изобразить следующим образом : Безводная азотная кислота Азотная кислота, не содержащая воды, является безводной. В ней пр

Электролиз

echo "Электрохимия принадлежит к числу тех немногих наук, дата рождения которых может быть установлена с высокой точностью. Это рубеж XVIII и XIX веков, когда благодаря знаменитым опытам итальянского

Метожы аналитической химии

echo "Выяснение химического состава почв, удобрений, кормов и сельскохозяйственной продукции важно для нормально функционирования агропромышленного комплекса. Химический анализ незаменим в медицинско

Титан

echo "Другой важной причиной является трудность выделения рассматриваемых элементов из их природных соединений. Цирконий открыт в 1789 г., титан — в 1791 г. Открытие гафния последовало лишь в 1923 г

Дипольный момент молекулы и связи

echo "Систему из двух разноименных электрических зарядов, равных по абсолютной величине, называют диполем. Полярность молекулы (и полярность связи) характеризуется дипольным моментом молекулы (или св

Аналитические весы

echo "Весьма непростыми являются при этом и устройства измерения, так как определяемый параметр изменяется не только от механического воздействия, но и от целого ряда других параметров, самым определя

Сравнительная характеристика меди и калия

echo "Атомная масса 63, 546. 29 63 С u +29 2 l 8 l 18 l 1 l "; echo ''; echo " "; echo ''; echo " "; echo ''; echo " "; echo ''; echo " "; echo ''; echo " "; echo ''; echo " "; echo ''; echo " "; echo