Антенный усилитель с подъёмом АЧХ

Антенный усилитель с подъёмом АЧХ

Наиболее эффективным представляется использование в данном случае межкаскадных корректирующих цепей 4-го порядка. Такая цепь позволяет делать коэффициент усиления с подъёмом до 6 дБ в полосе частот от 0 до f в, что очень важно для данного устройства.

Использование этих корректирующих цепей даёт возможность брать транзисторы с граничной частотой 2. Техническое задание Усилитель должен отвечать следующим требованиям: 1. 2. в области нижних частот не более 3 дБ в области верхних частот не более 3 дБ 3. 4. U вых=2.5 В 5. 6. R г= R н=50 Ом 3. Расчётная часть 3.1 Структурная схема усилителя . Учитывая то, что каскад с общим эмиттером позволяет получать усиление до 20 дБ, оптимальное число каскадов данного усилителя равно двум.

Предварительно распределим на каждый каскад по 15 дБ. Таким образом, коэффициент передачи устройства составит 30 дБ, из которых 25 дБ требуемые по заданию, а 5 дБ будут являться запасом усиления.

Структурная схема, представленная на рисунке 3.1, содержит кроме усилительных каскадов корректирующие цепи, источник сигнала и нагрузку. 3.2 Распределение линейных искажений в области ВЧ Расчёт усилителя будем проводить исходя из того, что искажения распределены следующим образом: выходная КЦ–1 дБ, выходной каскад с межкаскадной КЦ–1.5 дБ, входной каскад со входной КЦ–0.5 дБ. Таким образом, максимальная неравномерность АЧХ усилителя не превысит 3 дБ. 3.3 Расчёт выходного каскада 3.3.1 Выбор рабочей точки Координаты рабочей точки можно приближённо рассчитать по следующим формулам [1]: (3.3.1) где (3.3.2) (3.3.3) где – начальное напряжение нелинейного участка выходных характеристик транзистора, Так как в выбранной мной схеме выходного каскада сопротивление коллектора отсутствует, то Найдём мощность, рассеиваемую на коллекторе 3.3.2 Выбор транзистора Выбор транзистора осуществляется с учётом следующих предельных параметров: 1. ; 2. 3. 4. Этим требованиям полностью соответствует транзистор КТ996Б-2. Его основные технические характеристики приведены ниже.

Электрические параметры: 1. 2. 3. 4. В 5. 6. Предельные эксплуатационные данные: 1. 2. 3. Вт; 4. Нагрузочные прямые по переменному и постоянному току для выходного каскада представлены на рисунке 3.2. Напряжение питания выбрано равным 10В. Рисунок 3.2 3.3.3 Расчёт эквивалентной схемы транзистора Поскольку рабочие частоты усилителя заметно больше частоты Рисунок 3.3 Параметры эквивалентной схемы рассчитываются по приведённым ниже формулам.

Входная индуктивность: , (3.3.3) где Входное сопротивление: (3.3.4) где – справочные данные.

Крутизна транзистора: , (3.3.5) где , Выходное сопротивление: . (3.3.6) Выходная ёмкость: (3.3.7) В соответствие с этими формулами получаем следующие значения элементов эквивалентной схемы: 3.3.4 Расчёт цепей термостабилизации Существует несколько вариантов схем термостабилизации. Их использование зависит от мощности каскада и от того, насколько жёсткие требования к термостабильности. В данной работе рассмотрены три схемы термостабилизации: пассивная коллекторная, активная коллекторная и эмиттерная. 3.3.4.1 Пассивная коллекторная термостабилизация Данный вид термостабилизации (схема представлена на рисунке 3.4) используется на малых мощностях и менее эффективен, чем две другие, потому что напряжение отрицательной обратной связи, регулирующее ток через транзистор подаётся на базу через базовый делитель. Рисунок 3.4 Расчёт, подробно описанный в [3], заключается в следующем: выбираем напряжение (в данном случае – ток базы), затем находим элементы схемы по формулам: (3.3.8) , (3.3.9) где (3.3. 10 ) Получим следующие значения: Ом; 3.3.4.2 Активная коллекторная термостабилизация Активная коллекторная термостабилизация используется в мощных каскадах и является очень эффективной, её схема представлена на рисунке 3.5. Её описание и расчёт можно найти в [2]. Рисунок 3.5 В качестве VT 1 возьмём КТ315А. Выбираем падение напряжения на резисторе из условия ; (3.3.11) ; (3.3.12) ; (3.3.13) ; (3.3.14) , (3.3.15) где – статический коэффициент передачи тока в схеме с ОБ транзистора КТ315А; (3.3.16) ; (3.3.17) . (3.3.18) Получаем следующие значения: Ом; мА; В; кОм; А; кОм; кОм.

Величина индуктивности дросселя выбирается таким образом, чтобы переменная составляющая тока не заземлялась через источник питания, а величина блокировочной ёмкости – таким образом, чтобы коллектор транзистора VT 1 по переменному току был заземлён. 3.3.4.3 Эмиттерная термостабилизация Для выходного каскада выбрана эмиттерная термостабилизация, схема которой приведена на рисунке 3.6. Метод расчёта и анализа эмиттерной термостабилизации подробно описан в [3]. Рисунок 3. 6 Расчёт производится по следующей схеме: 1.Выбираются напряжение эмиттера и ток делителя (см. рис. 3.4), а также напряжение питания 2. Затем рассчитываются 3. Производится поверка – будет ли схема термостабильна при выбранных значениях и и В данной работе схема является термостабильной при мА. Учитывая то, что в коллекторной цепи отсутствует резистор, то напряжение питания рассчитывается по формуле (3.3.19) (3.3.20) . (3.3.21) Для того, чтобы выяснить будет ли схема термостабильной производится расчёт приведённых ниже величин.

Тепловое сопротивление переход – окружающая среда: (3.3.22) где – справочные данные; Температура перехода: (3.3.23) где – мощность, рассеиваемая на коллекторе.

Неуправляемый ток коллекторного перехода: (3.3.24) где – отклонение температуры транзистора от нормальной; лежит в пределах – коэффициент, равный 0.063–0.091 для германия и 0.083–0.120 для кремния.

Параметры транзистора с учётом изменения температуры: (3.3.25) где равно 2.2(мВ/градус Цельсия) для германия и 3(мВ/градус Цельсия) для кремния. (3.3.26) где Определим полный постоянный ток коллектора при изменении температуры: (3.3. 27 ) где (3.3. 28 ) Для того чтобы схема была термостабильна необходимо выполнение условия: где (3.3.29) Рассчитывая по приведённым выше формулам, получим следующие значения: Ом; Как видно из расчётов условие термостабильности выполняется. 3.4 Расчёт входного каскада по постоянному току 3.4.1 Выбор рабочей точки При расчёте требуемого режима транзистора промежуточных и входного каскадов по постоянному току следует ориентироваться на соотношения, приведённые в пункте 3.3.1 с учётом того, что заменяется на входное сопротивление последующего каскада. Но, при малосигнальном режиме, за основу можно брать типовой режим транзистора (обычно для маломощных ВЧ и СВЧ транзисторов мА и 3.4.2 Выбор транзистора Выбор транзистора осуществляется в соответствии с требованиями, приведенными в пункте 3.3.2. Этим требованиям отвечает транзистор КТ371А. Его основные технические характеристики приведены ниже.

Электрические параметры: 1. 2. 3. 4. 5. 6. Предельные эксплуатационные данные: 1. 2. 3. Вт; 4. 3.4.3 Расчёт эквивалентной схемы транзистора Эквивалентная схема имеет тот же вид, что и схема представленная на рисунке 3.3. Расчёт её элементов производится по формулам, приведённым в пункте 3.3.3. 3.4.4 Расчёт цепи термостабилизации Для входного каскада также выбрана эмиттерная термостабилизация, схема которой приведена на рисунке 3.7. Рисунок 3.7 Метод расчёта схемы идентичен приведённому в пункте 3.3.4.3 с той лишь особенностью что присутствует, как видно из рисунка, сопротивление в цепи коллектора Эта схема термостабильна при мА. Напряжение питания рассчитывается по формуле Рассчитывая по формулам 3.3.19–3.3.29 получим: кОм; Условие термостабильности выполняется. 3.4 Расчёт корректирующих цепей 3.4.1 Выходная корректирующая цепь Расчёт всех КЦ производится в соответствии с методикой описанной в [4]. Схема выходной корректирующей цепи представлена на рисунке 3.8. Найдём и (3 .5.1) . Рисунок 3.8 Теперь по таблице приведённой в [4] найдём ближайшее к рассчитанному значение и выберем соответствующие ему нормированные величины элементов КЦ и и модуль коэффициента отражения Найдём истинные значения элементов по формулам: (3.5.2) (3.5.3) . (3.5.4) Ом.

 

Категории

Технология

История экономических учений

Менеджмент (Теория управления и организации)

Философия

Химия

Административное право

Международные экономические и валютно-кредитные отношения

Математика

Бухгалтерский учет

Микроэкономика, экономика предприятия, предпринимательство

Радиоэлектроника

Физика

Теория систем управления

Маркетинг, товароведение, реклама

Банковское дело и кредитование

Право

Политология, Политистория

Охрана природы, Экология, Природопользование

Педагогика

Психология, Общение, Человек

Медицина

Ветеринария

Теория государства и права

Физкультура и Спорт

Сельское хозяйство

Уголовное право

Техника

Программирование, Базы данных

Программное обеспечение

Биология

Уголовное и уголовно-исполнительное право

Архитектура

История

Здоровье

Религия

Социология

Материаловедение

Криминалистика и криминология

Государственное регулирование, Таможня, Налоги

Экономическая теория, политэкономия, макроэкономика

Металлургия

Биржевое дело

Компьютерные сети

Уголовный процесс

Римское право

География, Экономическая география

Разное

Ценные бумаги

История государства и права зарубежных стран

Литература, Лингвистика

Историческая личность

Военная кафедра

История отечественного государства и права

Транспорт

Авиация

Астрономия

Космонавтика

Гражданская оборона

Подобные работы

Широкополосный усилитель мощности

echo "Полученные данные могут использоваться при создании реальных усилительных устройств. Курсовая работа выполнена в текстовом редакторе Microsoft Word 97 и представлена на дискете 3,5” (в конверте

Широкополосный усилитель с подъёмом АЧХ

echo "Курсовая работа выполнена в текстовом редакторе Microsoft Word 2000 и представлена на дискете 3,5. (в конверте на обороте обложки). Задание Диапазон частот от 10 МГц, до 200 МГц Допустимые часто

Усилитель приёмного блока широкополосного локатора

echo "Курсовая работа выполнена в текстовом редакторе Microsoft Word 7.0. ТЕХНИЧЕСКОЕ ЗАДАНИЕ на курсовое проектирование по курсу “ Аналоговые электронные устройства ” студент гр. 148-3 Воронцов С.А.

Усилитель корректор

echo "Курсовая работа выполнена в текстовом редакторе Microsoft Word 7.0, (представлена на дискете). Техническое задание Тема проэкта: широкополосный усилитель-корректор 1 . Диапазон частот от 20МГц д

Емкостные преобразователи

echo "Датчик... Что это такое? Понятием “датчик” в общем случае обозначают дешевый, но надежный приемник и преобразователь измеряемой величины, обладающий умеренной точностью и пригодный для серийного

Усилитель радиорелейной линии связи

echo "Полученный усилитель может быть использован для компенсации потерь мощности в радиорелейных линиях связи. Курсовая работа выполнена в текстовом редакторе Microsoft Word 7.0 (представлена на дис

Передающее устройство одноволоконной оптической сети

echo "Линейные тракты волоконнооптических систем передачи строятся как двухволоконные однополосные одно кабельные, одноволоконные одно полосные однокабельные, одноволоконные многополосные одно кабельн

Усилитель систем контроля радиовещательных станций

echo "Работа усилителя в составе средств контроля предъявляет к нему ряд противоречивых требований. Это малый уровень нелинейных искажений, реализация повышенного коэффициента полезного действия, по в