Безопасность жизнедеятельностиСуществует понятие нормируемого риска (приемлемый риск) R=10 -6 . Правовые и нормативно-технические основы обеспечения БЖД. Основные положения изложены в Конституции (дек. 1994г) в законе по охране труда и охране природы (1992-93) в КЗОТе. В качестве подзаконных актов выступают ГОСТы, Нормы и Правила. Взаимодействие госнадзора, ведомственного и общественного контроля. Организация службы охраны труда и природы на предприятии. Директор несет основную ответственность за охрану труда и природы. Организационными работами, связанными с обеспечением охраны труда и природы заним. гл. инженер. Отдел охраны труда (подчиняется гл. инженеру) решает текущ. вопросы, связанные с обеспечением безопасности труда. Функции отдела охраны труда: 1. контрольная (соблюдение приказов) 2. обучающая 3. представители отдела выступают в качестве экспертов при разработке тех. решений 4. отчетность по вопросам травматизма и проф. заболеваниям. Трехступенчатый контроль за охраной труда на предприятии. 1 этап. Контроль на рабочем месте (за цехом контроль осущ-т мастер, за лабораторией - рук. группой). Ежедневный контроль. 2 этап. Уровень цеха, лаборатории (периодичность еженедельная). 3 этап. Уровень предприятия (один из цехов выборочно проверяется комиссией), в состав которой входят: - гл. инженер; - нач. отдела охраны труда; - представитель мед. сан. части; - гл. специалист (технолог или энергетик) Обучение работающих безопасности труда. Система стандартов безопасности труда — ГОСТ 12.0.004-90 ССБТ Виды инструктажа 1. Вводный — ознакомление с общими вопросами БТ, проводит инженер безопасности труда. 2. Первичный — ознакомление с конкретными видами безопасности труда на данном предприятии на данном раб. месте, проводит руководитель работ. 3. Повторный — повторить инф-цию первичного инструктажа, периодичностью 1 раз в полгода, проводит рук. работ. 4. Внеплановый — проводится рук. работ в том случае, когда имеют место изменения в техн. процессе при поступлении нового оборудования, после того как произошел несчастный случай и при перерывах в работе, превышающие установленные. 5. Целевой — при выполнении работ, не связанных с основной специальностью, проводит рук. работ. Госты, Нормы и правила по охране труда и природы, их структура. Система стандартов БТ — комплекс мер, направленных на обеспечение БТ. Структура Госта: Правила — перечень мер по технике безопасности. ПУЭ-85 Правила устройств электроустановки. СН и ПII-4-79. Система управления БТ на предприятии. Вредный производственный фактор — фактор, воздействие к-го на работающего может привести к заболеванию. ГОСТ 12-0-003-74 ССБТ - Опасные и вредные производ. факторы. (Классификация). Группы опасных и вредных производственных факторов: 1 Физические: 1.1 перемещающиеся изделия заготовки, незащищенные подвижные элементы производственного оборудования; 1.2 загазованность, запыленность раб. зоны; 1.3 повышенный уровень шума; 1.4 повышенный уровень напряжения в эл. сети, замыкание которого может произойти в теле человека; 1.5 повышенный уровень ионизирующего излучения; 1.6 повышенный уровень эл.магнитных полей; 1.7 повышенный уровень ультрафиолетового излучения; 1.8 недостаточная освещенность раб. зоны. 2 Химические: 2.1 раздражающие вещества. 3 Биологические: 3.1 макрои микроорганизмы. 4 Психофизиологические: 4.1 физические перегрузки; 4.1.1 статические нагрузки; 4.1.2 динамические нагрузки; 4.1.3 гиподинамия. 4.2 нервно-эмоциональные нагрузки: 4.2.1 умственное перенапряжение; 4.2.2 переутомление; 4.2.3 перенапряжение анализаторов (кожные, зрит., слуховые и т.д.); 4.2.4 монотонность труда; 4.2.5 эмоциональные перенагрузки. Структурная схема взаимосвязи машина-фактор-работающий. Несчастные случаи подразделяются: легкие; средней тяжести; групповые; с инвалидным исходом; со смертельным исходом. Проф. заболевания подразделяются: · хронические; · внезапные Совокупность производственных травм называется травматизмом. Отчетность по производственному травматизму: I. Коэффициент тяжести травматизма (ср. продолжительность одной травмы) Администрация несет ответственность: 1. Дисциплинарную; 2. Материальную; 3. Административную; 4. Уголовную Причины несчастных случаев: - организационные (объективные); - технические (субъективные). Методы исследования причин травматизма . Объект исследования: человек; производственная обстановка; технологические процессы; оборудование 1. Монографический (изучение одного из объектов причин травматизма); 2. Статистический (К Т , К С ); 3. Топографический (нанести опасные раб. места на план цеха и оценить обстановку); 4. Экономический (анализ затрат на травматизм по б/л); 5. Комбинированный (системный). Оздоровление воздушной среды . На раб. местах большое значение отводится созданию комфортных условий труда, к-е обеспечиваются параметрами микрокл. и степенью запыленности воздуха. Терморегуляция организма человека — способность человеческого тела поддерживать постоянную т-ру. Нормативные содержания вредных веществ и микроклимата. При наличии вредных веществ их концентрация регламентируется величиной предельно допустимой концентрации (ПДК). ПДК = [мг/м3] ГОСТ 12.1.005-88 ССБТ Общие санитарно-гигиенические требования к воздуху раб. зоны. ПДК в воздухе раб. зоны — такая концентрация вредных веществ, которая в течение 8-ми часового раб. дня или раб. дня другой продолжительности, но не более 41-го часа в неделю не вызывает отклонений в состоянии здоровья работающих, а также не влияет на настоящее и будущее поколения. В воздухе населенных мест содержание вред. в-в регламентируется в соотв-вии с СН 245-71. ПДК СС (средне суточная) — такая концентрация, которая не вызывает отклонений при прямом или косвенном воздействии на человека в воздухе населенного пункта в течение сколь угодно долгого дыхания. ПДК МР (max разовое) — такая концентрация, которая не вызывает со стороны организма человека рефлекторных реакций (ощущение запаха. изменение световой чувствительности, биоэлектрической активности мозга и т.д.) Эти величины определены для » 1203 веществ, для остальных, ОБУВ (ориентировочно-безопасный уровень воздействия) сроком » 3 года. В соотв-вии с ГОСТ 12.1.007-76 все вредные в-ва подразделяются на 4 кл. по величине ПДК: I кл 3 — чрезвычайноопасн. вр. в-ва; II кл 0,1 — 1 мг/м 3 — высоко опасные III кл 1 — 10 мг/м 3 — умеренно опасные IV кл > 10 мг/м 3 — мало опасные Эффект суммации — при нахождении в воздухе нескольких вполне определенных в-в, они обладают свойством усиливать действие друг друга. Для того, чтобы оценить действие в-в, обладающих эффектом суммации используется формула: Микроклимат на раб. месте хар-ся: - температура, t, ° С; - относительная влажность, j , %; - скорость движения воздуха на раб. месте, V, м/с; - интенсивность теплового излучения W, Вт/м 2 ; - барометрическое давл., р, мм рт. ст. (не нормируется) В соответствии с ГОСТ 12.1.005-88 нормируемые параметры микроклимата подразделяются на оптимальные и допустимые. Оптимальные параметры микроклимата — такое сочетание т-ры, относит. влажности и скорости воздуха, которое при длительном и систематическом воздействии не вызывает отклонений в состоянии человека. t = 22 - 24, ° С, j = 40 - 60, %, V 0,2 м/с Допустимые параметры микроклимата — такое сочетание параметров микроклимата, которое при длительном воздействии вызывает приходящее и быстронормализующееся изменение в состоянии работающего. t = 22 - 27, ° С, j 75, %, V = 0,2-0,5 м/с Раб. зона — пространство над уровнем горизонтальной пов-ти, где выполняется работа, высотой 2 метра. Раб. место — (м.б. постоянным или непостоянным), где выполняется технологическая операция. Для определения нормы микроклимата на рабочем месте, необходимо знать 2 фактора: 1. Период года (теплый, холодный). + 10 ° С граница 2. Категория выполняемой работы, которая подразделяется в зависимости от энергозатрат: - легкую (Iа — до 148 Вт, Iб — 150-174 Вт); - средней тяжести (IIа — 174-232 Вт, IIб — 232-292 Вт); - тяжелая (III — свыше 292 Вт). Методы и ср-ва контроля защиты воздушной среды . Системы вентиляции. Вентиляция — организованный воздухообмен, который обеспечивает удаление из помещения воздуха, загрязненного избыточным теплом и вредными веществами и тем самым нормализует воздушную среду в помещении. Работоспособность системы вентиляции определяется показателем кратности воздухообмена (К). Система вытяжной вентиляции. Система механической вентиляции должна обеспечивать допустимые параметры микроклимата на раб. местах в производственных помещениях. Создание условий для эксплуатации ВТ, а в системе вытяжной вентиляции устройство обеспечивает защиту воздуха населенных мест от вредных воздействий. В зависимости от использования средств, очистку подразделяют на: грубую (концентрация более 100 мг/м 3 вредных в-в); среднюю (концентрация 100 - 1 мг/м 3 вредных в-в); тонкую (концентрация менее 1 мг/м 3 вредных в-в). Очистку воздуха от пыли и создание оптимальных параметров микроклимата на РМ, обеспечивает система кондиционирования. Очистка воздуха, удаляемого из помещения, осуществляется с помощью 2-х типов устр-в: - пылеуловители; - фильтры. Очистка воздуха при использовании пылеуловителя осуществляется за счет действия сил тяжести и сил инерции. По конструктив. особен-ям пылеуловители бывают: - циклонные; - инерцион.;- пылеосадительные камеры. Фильтры — устройства, в которых для очистки воздуха используются материалы ( пр-во ), способные осаживать или задерживать пыль. - бумажные; тканевые; электрические; ультразвуковые; масляные; гидравлические; комбинированные Система очистки воздуха. 1 . Механические (пыли, масел, газообразных примесей) 1.1 Пылеуловители; 1.2 Фильтры 2 . Физико-химические (очистка от газообраз . примесей) 2.1 Сорбция 2.1.1 адсорбция (актив. уголь); 2.1.2 абсорбция (жидкость) 2.2 Каталитические (обезвреживание газообразных примесей в присутствии катализатора) Контроль параметров воздушной среды. Осуществляется с помощью приборов: - Термометр (т-ра); - Психрометр (относит. влажность); - Анемометр (скорость движения воздуха); - Актинометр (интенсивность теплового излучения); - Газоанализатор (концентрация вредных в-в). Электробезопасность . Воздействие эл. тока на организм человека Кол-во эл. травм в общем, числе невелико, до 1,5%. Для эл. установок напряжением до 1000 V кол-во эл. травм достигает 80%. Причины эл. травм. Человек дистанционно не может определить находится ли установка под напряжением или нет. Ток, который протекает через тело человека, действует на организм не только в местах контакта и по пути протекания тока, но и на такие системы как кровеносная, дыхательная и сердечно-сосудистая. Возможность получения эл. травм имеет место не только при прикосновении, но и через напряжение шага и через эл. дугу. Эл. ток, проходя через тело человека, оказывает термическое воздействие, к-ое приводит к отекам (от покраснения, до обугливания), электролитическое (химическое), механическое, к-ое может привести к разрыву тканей и мышц; поэтому все эл. травмы делятся местные; общие (электроудары). Местные эл. травмы: · эл. ожоги (под действием эл. тока); · эл. знаки (пятна бледно-желтого цвета); · металлизация пов-ти кожи (попадание расплавленных частиц металла эл. дуги на кожу); · электроофтальмия (ожог слизистой оболочки глаз). Общие эл. травмы (электроудары): 1 степень: без потери сознания 2 степень: с потерей 3 степень: без поражения работы сердца 4 степень: с поражением работы сердца и органов дыхания Крайний случай состояние клинической смерти (остановка работы сердца и нарушение снабжения кислородом клеток мозга. В состоянии клинической смерти находятся до 6-8 мин.) Причины поражения эл. током ( напряж . Прикосновения и шаговое напряж .): 1 . Прикосновение к токоведущим частям, находящимся под напряжением; 2 . Прикосновение к отключенным частям, на которых напряжение может иметь место: 2.1 в случае остаточного заряда; 2.2 в случае ошибочного вкл . эл. установки или несогласованных действий обслуж. персонала; 2.3 в случае разряда молнии в эл. установку или вблизи; 2.4 прикосновение к металлическим не токоведущим частям или связанного с ними эл. оборуд-я (корпуса, кожухи, ограждения) после перехода напряж . на них с токоведущих частей (возникновение авар. ситуации — пробой на корпусе). 3 . Поражение напряжением шага или пребывание человека в поле растекания эл. тока, в случае замыкания на землю. 4 . Поражение через эл. дугу при напряжении эл. установки выше 1кВ, при приближении на недопустимо-малое расстояние. 5 . Действие атмосф . эл-чества при газовых разрядах. 6 . Освобождение человека, находящ-ся под напряж . Факторы, влияющие на исход поражения эл. током: 1. Род тока (постоянный или переменный, частота 50Гц наиболее опасна) 2. Величина силы тока и напряжения. 3. Время прохождения тока через организм человека. 4. Путь или петля прохождения тока. 5. Состояние организма человека. 6. Условия внешней среды. Количественные оценки: 1. В интервале напряжения 450-500 В, вне зависимости от рода тока, действие одинаково. - меньше 450 В — опаснее переменный ток, - меньше 500 В — опаснее постоянный ток. 2. Кардиологические заболевания, заболевания нервной системы и наличие алкоголя в крови, снижают сопротивление тела человека. 3. Наиболее опасным является путь прохождения тока через сердечную мышцу и дыхательную систему. Хар-р воздействия пост. и перем . токов на организм чел.:
Факторы, приводящие к уменьшению сопротивления тела человека: увлажнение поверхности кожи; увеличение площади контакта; время воздействия. Сопротивление рогового (верхнего слоя кожи) от 10 до 100 кОм . Сопротивление внутренних тканей 800-1000 Ом. Расчетная величина R ЧЕЛ = 1000 Ом. Классификация помещений по опасности поражения эл. током (ПУЭ-85). Помещения I класса . Особо опасные помещения. 1. 100 % влажность; 2. наличие активной среды Помещения II класса . Помещения повышенной опасности поражения эл. током. 1. повышенная т-ра воздуха (t = + 35 ° С); 2. повышенная влажность (> 75 %); 3. наличие токопроводящей пыли; 4. наличие токопроводящих полов; 5. наличие эл. установок (заземленных) — возможности прикосновения одновременно и к эл. установке и к заземлению или к двум эл. установкам одновременно. Помещения III класса . Мало опасные помещения. Отсутствуют признаки, характерные для двух предыдущих классов. Закон Ома в дифференциальной форме: E = i r r - удельное сопротивление грунта [Ом м] i - плотность тока Т.к. падение напряжения между двумя точками или разность потенциалов Напряжение прикосновения — это разность потенциалов точек эл. цепи, которых человек касается одновременно, обычно в точках расположения рук и ног.
Снижение напряжения между корпусом, оказавшимся под напряжением (в случае аварийной ситуации) и землей, до безопасной величины. Заземление используется в 3-х фазных 3-х проводных сетях с изолированной нейтралью. Эта система заземления работает в том случае, если RН 4 Ом; V 0,5 Ом; V > 1000 В (ПУЭ-85) Принцип действия зануления. Преднамеренное соединение корпусов эл. установок с многократно заземленной нейтралью трансформатора или генератора. Превращение замыкания на корпус в однофазное короткое замыкание за счет срабатывания токовой защиты, которая отключает систему питания и тем самым отключается поврежденное устройство. Принцип действия защитного отключения. Это преднамеренное автоматическое отключение эл. установки от питающей сети в случае опасности поражения эл. током. Условия, при которых выполняется заземление или зануление в соответствии с требованиями ПУЭ-85. 1. В малоопасных помещениях 380 В и выше переменного тока 440 В и выше постоянного тока 2. В особо опасных помещениях, помещениях с повышенной опасностью и вне помещений 42 В и выше переменного тока 110 В и выше пост. тока 3. При всех напряжениях во взрывоопасных помещения. Заземляющие устройства бывают естественными (используются конструкции зданий) в этом случае нельзя использовать те элементы, которые при попадании искры приводят к аварии (взрывоопасные). Искусственные — контурное и выносное защитное заземляющее устройство. Пример. Контурное заземляющее устройство. Многообразие средств защиты и условий эксплуатации привели к унификации средств защиты. В условиях экспорта-импорта ЭТИ, была создана IP. IP-30 3 - степень защиты 0 - степень защиты IP-44 4 - от попадания внутрь 4 - — ² — IP-5х 5 - оболочки тв . тел х - влаги Производственное освещение . Вся информация подается через зрительный анализатор. Вред. воздействие на глаза человека оказывают следующие опасные и вред. производственные факторы: 1. Недостаточное освещение раб. зоны; 2. Отсутствие/недостаток естественного света; 3. Повышенная яркость; 4. Перенапряжение анализаторов (в т.ч. зрительных) По данным ВОЗ на зрение влияет: · УФИ; яркий видимый свет; · мерцание; · блики и отраженный свет. Физиологические характеристики зрения . 1. острота зрения; 2. устойчивость ясного видения (различие предметов в течение длительного времени); 3. контрастная чувствительность (разные по яркости); 4. скорость зрительного восприятия (временной фактор); 5. адаптация зрения; 6. аккомодация (различие предметов при изменении расстояния). Светотехнические величины . Это понятие связано с той или иной осветительной установкой. Наименьший размер объекта различения с фоном. 7. Коэффициент отражения r r = F ПАД /F ОТР В зависимости от коэф. отражения фон бывает: - светлый r = 0,2 - 0,4; - темный r Естественное освещение . При естественном освещении к-либо точки горизонтальной плоскости, за основу при нормировании принимается минимально допустимая величина коэффициента естественной освещенности. Коэф. ест. освещ. (КЕО) = Е = E ВН /Е СН 100%, где E ВН - освещенность к-либо точки горизонтальной пов-ти, находящейся внутри помещения [лк]; Е СН - освещенность к-либо точки, находящейся снаружи помещения на расстоянии 1 м от здания [лк]; Системы естественного освещения. Естественное и искусственное освещение. Нормы проектирования - М, Стройиздат, 1980) нормируются. Для выбора естественного освещения необходимо учитывать следующие факторы: 1. Характеристика зрительной работы; 2. Минимальный размер объекта различения с фоном; 3. Разряд зрительной работы; 4. Система освещения. В зав-ти от величины объекта различения с фоном все зрительные работы подразделяются на 8 разрядов. Разряд зрительной работы — отношение минимального размера объекта различения с фоном к расстоянию от органов зрения до объекта различения. Искусственное освещение . Искусственное освещение — освещение помещ. прямым или отраженным светом искусств. источника света За основу при нормировании принимается минимально доп. величина освещенности к-либо точки. Системы искусственного освещения. общее; местное (локальное); комбинированное Может быть использовано в производственных помещениях общее и комбинированное, а одно местное использовать нельзя. Имеет место также освещение: - аварийное; - дежурное; - эвакуационное. СНиП II-4-79 Факторы, учитываемые при нормировании искусственного освещения: 1. Характеристика зрительной работы; 2. Минимальный размер объекта различения с фоном; 3. Разряд зрительной работы; 4. Контраст объекта с фоном; 5. Светлость фона (характеристика фона); 6. Система освещения; 7. Тип источника света. Подразряд зрит. работы определ. сочетанием п.4 и п.5. Методика расчета естественного освещения. Используется метод А.Д.Данилюка. Определяется площадь поверхности оконных премов. Методика расчета искусственного освещения. 1. Метод светового потока 2. Метод удельной мощности 3. Точечный метод Метод светового потока: Задача. Определить освещенность на раб. месте Е РМ = (0,9 - 1,2) Е Н Для этого необходимо выбрать: 1. систему освещения; 2. источник света; 3. светильник. Формула для определения светового потока лампы или группы ламп
Вредное воздействие шума: - сердечно-сосудистая система; - неравная система; - органы слуха (барабанная перепонка) Физические характеристики шума. 1. интенсивность звука J, [Вт/м 2 ]; 2. звуковое давление Р, [Па]; 3. частота f, [Гц] Интенсивность — кол-во энергии, переносимое звуковой волной за 1 с через площадь в 1 м 2 , перпендикулярно распространению звуковой волны. Звуковое давление — дополнительное давление воздуха, которое возникает при прохождении через него звуковой волны. Учитывая протяженный частотный диапазон (20-20000 Гц) при оценки источника шума, используется логарифмический показатель, который называется уровнем интенсивности. Спектр шума — зав-ть уровня звук. давл-я от частоты. Спектры бывают: - дискретные; - сплошные; - тональный. В производственном помещении обычно бывают несколько источников шума. Для оценки источника шума одинаковых по своему уровню: L = L i + 10 lgn L i - уровень звук. давления одного из источников [дБ]; n - кол-во источников шума Если кол-во источников меняется от 1-100, а L i = 80 дБ n = 1 L = 80 дБ n = 10 L = 90 дБ n = 100 L = 100 дБ Для оценки источников шума различных по своему уровню: L = L max + D L L max - максимальный уровень звукового давления одного из 2-х источников; D L - поправка, зависящая от разности между max и min уровнем давления
Нормирование по уровню звукового давления. 2 метод. Нормирование по уровню звука. По 1 методу дополнительный уровень звукового давления на раб. местах (смена 8 ч) устанавливается для октавных полос со средними геом. частотами, т.е. нормируется с учетом спектра. По 2 методу дополнит. уровень звука на раб. местах устанавливается по общему уровню звука, определенного по шкале А шумомера, т.е. на частоте 1000 Гц. Нормы шума для помещений лабораторий.
Строительно-планировочная Использование определенных строительных материалов связано с этом проектирования. В ИВЦ — акустическая обработка помещения (облицовка пористыми акустическими панелями). Для защиты окр. среды от шума используются лесные насаждения. Снижается уровень звука от 5-40 дБА. II группа. Конструктивная 1. Установка звукоизолирующих преград (экранов). Реализация метода звукоизоляции (отражение энергии звуковой волны). Используются материалы с гладкой поверхностью (стекло, пластик, металл). Акустическая обработка помещ. (звукопоглощение). Можно снизить уровень звука до 45 дБА. 2. Использование объемных звукопоглатителей (звукоизолятор + звукопоглатитель). Устанавливается над значительными источниками звука. Можно снизить уровень звука до 30-50 дБА. III группа. Снижение шума в источнике его возникновения Самый эффективный метод, возможен на этапе проектирования. Используются композитные материалы 2-х слойные. Снижение: 20-60 дБА. IV группа. Организационные мероприятия 1. Определение режима труда и отдыха персонала. 2. Планирование раб. времени. 3. Планирование работы значительных источников шума в разных источниках. Снижение: 5-10 дБА. Если уровень шума не снижается в пределах нормы, используются индивидуальные средства защиты (наушники, шлемофоны). Приборы контроля: - шумомеры; - виброакустический комплекс — RFT, ВШВ. Инфразвук Инфразвук — колебание звуковой волны > 20 Гц. Природа возникновения инфразвуковых колебаний такая же, как и у слышимого звука. Подчиняется тем же закономерностям. Используется такой же математический аппарат, кроме понятия, связанного с уровнем звука. Особенности: малое поглощение эн., значит, распространяется на значительные расстояния. Источники инфразвука: оборудование, которое работает с частотой циклов менее 20 в секунду. Вредное воздействие: действует на центр. нервную систему (страх, тревога, покачивание, т.д.) Опасность для человека . Диапазон инфразвуковых колебаний совпадает с внутренней частотой отдельных органов человека (6-8 Гц), следовательно, из-за резонанса могут возникнуть тяжелые последствия. Увеличение звукового давления до 150 дБА приводит к изменению пищеварительных функций и сердечному ритму. Возможна потеря слуха и зрения. Нормирование инфразвука . СН 22-74-80. Нормативным параметром являются логарифмические уровни звукового давления в октавных полосах со ср. геом. Частотой: 2, 4, 8, 16 Гц 105 дБА 32 Гц 102 дБА Защитные мероприятия . 1. Снижение ин. звука в источнике возникновения. 2. Средства индивидуальной защиты. 3. Поглощение. Приборы контроля . Шумомеры типа ШВК с фильтром ФЭ-2. Виброакустическая аппаратура типа RFT. Ультразвук . Ультразвук — колебание звуковой волны Используется в оптике (для обезжиривания, ...) — Низкочастотные ультразвуковые колебания распространяются воздушным и контактным путем. — Высокочастотные - контактным путем. Вредное воздействие — на сердечно-сосудистую систему; нервную систему; эндокринную систему; нарушение терморегуляции и обмена веществ. Местное воздействие может привести к онемению. Нормирование ультразвука . ГОСТ 12.1.001-89. Нормируются логарифмические уровни звукового давления в октавных полосах: 12,5 кГц не более 80 дБА 20 кГц 90 дБА 25 кГц 105 дБА от 31-100 кГц 110 дБА Меры защиты . 1. Использование блокировок. 2. Звукоизоляция (экранирование). 3. Дистанционное управление. 4. Противошумы. Приборы контр.: виброакустическая система типа RFT. Вибрация . Вибрация — механические колебания материальных точек или тел. Источники вибраций: разное производственное оборудование. Причина появления вибрации: неуравновешенное силовое воздействие. Вр. воздействия: повреждения различных органов и тканей; влияние на центр. нервную систему; влияние на органы слуха и зрения; повышение утомляемости. Более вредная вибрация, близкая к собственной частоте человеческого тела (6-8 Гц) и рук (30-80 Гц). Основные характеристики . 1. Колебательная скорость: V, м/с 2. Частота колебаний: f, Гц 3. Ср. квадратичное значение колебательной скорости в соотвв-ии полосе частот: V C , м/с 4. Логарифм. уровень виброскорости при расчетах и нормировании: L V =20 lg V C /V 0 [дБ] V 0 - пороговое значение колебательной скорости (V 0 = 5 10 -8 м/с) По способу передачи вибрации на человека: - общая; - локальная (ноги или руки). По источнику возникновения: - транспортная; - технологическая; - трансп. - технологич-я . Нормирование вибрации . I направление. Санитарно-гигиеническое. II направление. Техническое (защита оборудования). ГОСТ 12.1.012-90 ССБТ Вибрационная безопасность. Октава f 1 ¬ ® f 2 , f 2 /f 1 =2, f СР = Граничные частоты октавных полос: 1,4-2,8 2,8-5,6 5,6-11,2 ... 45-90 2 4 8 63 ср. геом. частоты Методы снижения вибрации . 1. Снижение вибрации в источнике ее возникновения. 2. Конструктивные методы (виброгашение, виброденфирование - подбор опр. видов матер., виброизоляция). 3. Организационные меры. Орг-я режима труда и отдыха. 4. Использ. ср-в инд. защиты (защита опорных пов-тей) Ультрафиолетовое излучение . l = 1 — 400 нм. Особенности: По способу генерации относятся к тепл. излуч., и по хар-ру воздействия на в-ва к ионизирующим излучениям. Диапазон разбивается на 3 области: 1. УФ — А (400 — 315 нм) 2. УФ — В (315 — 280 нм) 3. УФ — С (280 — 200 нм) УФ — А приводит к флюоресценции. УФ — В вызывает изменения в составе крови, кожи, воздействует на нервную систему. УФ — С действует на клетки. Вызыв. коагуляцию белков. Действуя на слизистую оболочку глаз, приводит к электро-офтамии. Может вызвать помутнее хрусталика. Источники УФ излучения: · лазерные установки; · лампы газоразрядные, ртутные; · ртутные выпрямители. Нормирование УФ излучения . С учетом оптико-физиологических св-в глаза, а также областей УФ излучений (волновые) установлены: допустимая плотность потока эн., которой обеспечивают защиту пов-тей кожи и органов зрения. УФ-А не более 10; УФ-В не более 0,005; УФ-С не более 0,001 [Вт/м 2 ] Меры защиты . 1. Экранирование источника УФИ. 2. Экранирование рабочих. 3. Специальная окраска помещений (серый, желтый,...) 4. Рациональное расположение раб. мест. Средства индивидуальной защиты . 1. ткани: хлопок, лен 2. специальные мази для защиты кожи 3. очки с содержанием свинца Приборы контроля: радиометры, дозиметры. Лазерное излучение Лазерное излучение: l = 0,2 - 1000 мкм. Осн. источник - оптический квантовый генератор (лазер). Особенности лазерного излучения - монохроматичность; острая направленность пучка; когерентность. Свойства лазерного излучения: высокая плотность энергии: 10 10 -10 12 Дж/см 2 , высокая плотность мощности: 10 20 -10 22 Вт/см 2 . По виду излучение лазерное излучение подразд-ся: — прямое излучение; рассеянное; зеркально-отраженное; диффузное. По степени опасности: I. класс. Неопасные для человека II. Опасные Биологические действия лазерного излучения зависит от длины волны и интенсивности излучения, поэтому весь диапазон длин волн делится на области: - ультрафиолетовая 0.2-0.4 мкм - видимая 0.4-0.75 мкм - инфракрасная: a) ближняя 0.75-1 b) дальняя свыше 1.0 Опасные и вредные факторы при эксплуатации лазеров.
Нормирование лазерного излучения. CH 23- 92- 81 Нормируемый параметр — предельно - допустимый уровень (ПДУ) лазерного излучения при l =0.2-20 мкм и кроме этого регламентируется ПДУ на роговице, сетчатке, коже. ПДУ — отношение энергии излучения, падающей на определенные участки поверхности к площади этого участка [Дж/см 2 ] ПДУ зависит от: - длины волны лазерного излучения [мкм] - продолжительности импульса [cек] - частоты повторения импульса [Гц] - длительности воздействия [сек] Меры защиты от воздействия лазерного излучения .
Аппаратура контроля: лазерные дозиметры. Инфракрасное излучение. 760 нм — 540 мкм. Поддиапазоны : А — коротковолновая область ИФ изл. 760 — 1500 н/м.
Воздействие ИФ излучения оценивается плотностью потока энергии на рабочем месте. ГОСТ 12.1.005 — 88 Общие санитарно-гигиенические требования в области рабочей зоны. Область ИФ излучения.
Приборы контроля ИФ . 1. Актинометр (1 — 500) Вт/м 2 . 2. Радиометры. 3. Спектрорадиометр. 4. Радиометр оптического излучения. 5. Дозиметр оптического излучения. Электромагнитное поле . Источник возникновения — пром. установки, радиотехнич. объекты, мед. апп., уст-ки пищ. пром-ти. Характеристики эл. магнитного поля: 1. длина волны, [м] 2. частота колебаний [Гц] l = V C /f, где V C = 3 10 м/с Номенклатура диапазонов частот (длин волн) по регламенту радиосвязи:
Пространство вокруг источника эл. поля условно подразделяется на зоны: — ближнего (зону индукции); — дальнего (зону излучения). Граница между зонами является величина: R= l /2 p . В зависимости от расположения зоны, характеристиками эл.магн. поля является: — в ближней зоне ® составляющая вектора напряженности эл. поля [В/м] составляющая вектора напряженности магн. поля [А/м] — в дальней зоне ® используется энергетическая характеристика: интенсивность плотности потока энергии [Вт/м 2 ],[мкВт/см 2 ]. Вредное воздействие эл. магнитных полей . Эл. магн. поле большой интенсивности приводит к перегреву тканей, воздействует на органы зрения и органы половой сферы. Умеренной интенсивности: нарушение д-ти центральной нервной системы; сердечно-сосудистой; нарушаются биологические процессы в тканях и клетках. Малой интенсивности: повышение утомляемости, головные боли; выпадение волос. Нормирование эл. магн. полей . ГОСТ 12.1.006-84 Нормируемым параметром эл. магн. поля в диапазоне частот 60 кГц-300 МГц является предельно-допустимое значение составляющих напряженностей эл. и магнитных полей. Ионизирующее излучение . Ионизирующее излучение — излучение, взаимодействие которого со средой приводит к возникновению ионов различных знаков. Характеристики ионизирующего излучения . · Экспозиционная доза — отношение заряда вещества к его массе [Кл/кг]; · Мощность экспозиционной дозы [Кл/кг с]; · Поглощенная доза — средняя энергия в элементарном объеме на массу вещества в этом объеме [Гр=Грей], внесистемная единица - [Рад]; · Мощность поглощенной дозы [Гр/с], [Рад/с]; · Эквивалентность — вводится для оценки заряда радиационной опасности при хроническом воздействии излучения произвольным составом [Зв=Зиверт], внесистемная единица [бэр]. 1 Зв=1Гр/Q, где Q - коэф. качества (зависит от биологического эффекта ИИ). · Радиоактивность — самопроизвольное превращение неустойчивого нуклида в другой нуклид, сопровождающееся испусканием ионизирующего излучения Активностью радионуклида назыв. величина, к-ая хар-ся числом распада радионуклидов в ед. времени или числом радиопревращений в ед. времени. [Беккерель — Бк] Виды и источники ИИ в бытовой, произв. и окружающей среде: К ИИ относится: — корпускулярная ( a , b нейтроны); — ( g ,лент, электромагн.) По ионизирующей способности наиболее опасно a излучение, особенно для внутреннего излучения (внутр. органы, проникая с воздухом и пищей). Внешнее излучение действует на весь организм человека. Фоновое облучение организма человека создается космическим излучением, искусственными и естественными радиоактивными веществами, которые содержатся в теле человека и окружающей среде. Фоновое облучение включает: 1) Доза от космического облучения; 2) Доза от природных источников; 3) Доза от источников, испускающих в окружающую среду и в быту; 4) Технологически повышенный радиационный фон; 5) Доза облучения от испытания ядерного оружия; 6) Доза облучения от выбросов АЭС; 7) Доза облучения, получаемая при медицинских обследованиях и радиотерапии; Эквивалентная доза — от космического облучения — 300 мкЗв/год. В биосфере Земли находится примерно 60 радиоактивных нуклидов. Эффективность дозы облучения ТЭЦ в 5 - 10 раз выше, чем АЭС в увеличении фона. При полете в самолете на высоте 8 км дополнительное облучение составляет 1,35 мкЗв/год. Цветной телевизор на расстоянии 2,5 метра от экрана 0,0025 мкЗв/час, 5 см. от экрана — 100 мкЗв/час. Ср. эквивалентная доза облучения при медицинских исследованиях 25 - 40 мкЗв/год. Дополнительные дозы облучения 0,5 млБэр/час на расст. 5 м. от бытовой аппаратуры 28 млРент/час. Биологическое действие геонизир. изл. 1. Первичные (возникают в молекулах ткани и живых клеток) 2. Нарушение функций всего организма Наиболее радиочувствительными органами являются: — костный мозг; — половая сфера; — селезенка Изменения на клеточном уровне различают: 1. Соматические или телесные эффекты, последствия которых сказываются на человеке, но не на потомстве. 2. Стохастические (вероятностные): лучевая болезнь, лейкозы, опухоли. 3. Нестохастические — поражения, вероятность которых растет по мере увеличения дозы облучения. Существует дозовый порог облучения. 4. Генетические. 100%-я доза летальности при облучении всего тела 6 Гр, доза 50% выживания — 2,4-4,2 Гр. Лучевая болезнь — более одного Гр. У большинства кажущиеся клинич-ое улучшение длится 14 — 20 суток. Период восстановления продолжается 3-4 месяца. Повышенной опасностью обладают радионуклиды, попавшие внутрь (с пищей, воздухом, водой). Наиболее опасен воздушный путь (за 6 ч. вдыхает 9 м воздуха, 2,2 л воды). Биологические периоды выведения радионуклидов из внутренних органов колеблется от нескольких десятков суток до бесконечности. Стронций — 90; Несколько десятков суток ® C 14 ,Na 24 Нормирование ИИ . Нормы радиационной безопасности (НРБ — 76/78) Регламентируются 3 категории облучаемых лиц: А — персонал, связей с источником ИИ; Б — персонал (ограниченная часть населения), находящихся вблизи источника ИИ; В — население района, края, области, республики. Группа критических органов (по мере уменьшения чувствительности): 1. Все тело, половая сфера, красный костный мозг 2. Мышцы, щитовидная железа, жировая ткань и др. органы за исключением тех, которые относятся к 1 и 3 группам 3. кожный покров, костная ткань, кисти, предплечья, стопы. Основные дозовые пределы, допустимые и контрольные уровни, которые приводятся в НРБ — 76/78 установлены для лиц категории А и Б. Нормы радиационной безопасности для категории В не установлены, а ограничение облучений осуществляются регламентацией или контролем радиоакт. объектов окр. среды. А дозовый предел — ПДД - наибольшее значение индивидуальной эквивалентной дозы за календарный год, которое при равномерном воздействии в течении 50 лет не вызывает отклонении в состоянии здоровья обслуживающего персонала, обнаруживаемые современными методами исследования. Б дозовый предел — ПД - основной дозовый предел, который при равномерном облучении в течение 70 лет не вызывает отклонений у обслуживающего персонала, обнаруживаемые современными методами исследования. Основные дозовые пределы для категорий А и Б:
Проектирование защиты от внешнего ионизирующего излучения, рассчитанные по мощности экспозиционной дозы, коэф. защиты равен 2. Все работы с открытыми источниками радиокт. веществ подразделяются на три класса: I. (самый опасный). Работа осуществляется дистанционно. Работа с ист. III-го класса осуществляется при использовании систем местной вентиляции (вытяжные шкафы). Работа с источником II-го класса осуществляется в отдельно расположенных помещениях, которые имеют специально оборудованный вход (душевой и средства проведения радиационного контроля). При выполнении работ с веществами I, II и III классов проведение радиационного контроля обязательно. Методы защиты от ионизирующих излучений . Основные методы: 1) Метод защиты количеством, т.е. по возможности снижение нормы дозы облучения. 2) Защита временем 3) Экранирование (свинец, бетон) 4) Защита расстоянием Приборы радиационного контроля. Приборы для измерения или контроля подраздел. на: - дозиметры (измер. экспозиционную или поглощенную дозу излучения, мощность этих доз) - радиометры (измеряют активность нуклида в радиоактивном источнике); - спектрометры (измеряют, распределение энергии ИИ по времени, массе и заряду элем. частиц); - сигнализаторы; - универсальные приборы (дозиметры + другие); - устройство детектирования. Требования к проведению радиационного контроля в ОСП 72/78. Пожарная безопасность. Горение — химическая реакция, которая сопровождается выделением тепла и света. Для осуществления горения необходимо: - окислитель (кислород); - источник возгорания; - источник пламени. Если речь идёт о горючих веществах, то степень пожарной опасности горючих веществ характеризуется: - температурой вспышки; - температурой воспламенения; - температурой самовоспламенением. По температуре вспышке горючие вещества делятся на: - ЛВЖ (до 45 ° ) температура вспышки; - горючие (более 45 ° ). Температура вспышки — минимальная температура, при к-ой над пов-тью ж-ти образуется смесь паров этой жидкости с воздухом, способная гореть при поднесении открытого источника огня. Процесс горения прекращается после удаления этого источника. Температура воспламенения — миним. т-ра, при к-ой в-во загорается от открытого источника огня и продолжает гореть после его удаления. Температура самовоспламенения — миним. т-ра, при к-ой происходит его воспламенение на воздухе за счет тепла химической реакции без поднесения открытого источника огня. Горючие газы и пыль имеют концентрационные пределы взрываемости. Классификация помещений и зданий по степени взрывопожарноопасности. ОНТП 24-85 Все помещения и здания подразделяются на 5 категорий: А - взрывопожароопасные. Та категория, в которой осуществляются технологические процессы, связанные с выделением горючих газов, ЛВЖ с т-рой вспышки паров до 28 ° С, t ВСП 28 ° С; Р - свыше 5 кПа. Б - помещения, где осуществляются технологические процессы с использованием ЛВЖ с температурой вспышки свыше 28 ° С, способные образовывать взрывоопасные и пожароопасные смеси, при воспламенении которых образуется избыточное расчетное давление взрыва свыше 5 кПа. t ВСП > 28 ° С; Р - свыше 5 кПа. В - помещения и здания, где обращаются технологические процессы с использованием горючих и трудногорючих жидкостей, твердых горючих веществ, которые при взаим-вии друг с другом или кислородом воздуха способны только гореть. При условии, что эти вещества не относятся ни к А, ни к Б. Эта категория — пожароопасная. Г - помещения и здания, где обращаются технологические процессы с использованием негорючих веществ и материалов в горячем, раскаленном или расплавленном состоянии (например, стекловаренные печи). Д - помещения и здания, где обращаются технологические процессы с использованием твердых негорючих веществ и материалов в холодном состоянии (механическая обработка металлов). Причины возникновения пожаров, связанные со специальностью студентов . При эксплуатации ЭВМ возможны возникновения следующих аварийных ситуаций: · короткие замыкания; · перегрузки; · повыш. переходных сопротивлений в эл. контактах; · перенапряжение; · возникновение токов утечки. При возникновении аварийных ситуаций происходит резкое выделение тепловой энергии, которая может явиться причиной возникновения пожара. На долю пожаров, возникающих в эл. установках приходится 20%. Статистические данные о пожарах Основные причины: % - короткое замыкание 43 - перегрузки проводов/кабелей 13 - образование переходных сопротивлений 5 Режим короткого замыкания — появление в результате резкого возрастания силы тока, эл. искр, частиц расплавленного металла, эл. дуги, открытого огня, воспламенившейся изоляции. Причины возникновения короткого замыкания: - ошибки при проектировании; - старение изоляции; - увлажнение изоляции; - механические перегрузки. Пожарная опасность при перегрузках — чрезмерное нагревание отдельных элементов, которое может происходить при ошибках проектирования в случае длительного прохождения тока, превышающего номинальное значение. При 1,5 кратном превышении мощности резисторы нагреваются до 200-300 ° С. Пожарная опасность переходных сопротивлений — возможность воспламенения изоляции или др. близлежащих горючих материалов от тепла, возникающего в месте авар. сопротивления (в переходных клеммах, переключателях и др.). Пожарная опасность перенапряжения — нагревание токоведущих частей за счет увеличения токов, проходящих через них, за счет увеличения перенапряжения между отдельными элементами электроустановок. Возникает при выходе из строя или изменении параметров отдельных элементов. Пожарная опасность токов утечки — локальный нагрев изоляции между отдельными токоведущими элементами и заземленными конструкциями. Классификация взрывои пожароопасных зон помещения в соотв-вии с ПУЭ Для обеспечения конструктивного соответствия эл. технических изделий правила устройства эл. установок — ПУЭ-85 выделяется пожарои взрывоопасные зоны. Пожароопасные зоны — пространства в помещении или вне его, в котором находятся горючие вещества, как при нормальном осуществлении технологического процесса, так и в результате его нарушения. Зоны: П-I - помещения, в которых обращаются горючие жидкости с т-рой вспышки паров свыше 61 ° С. П-II - помещ., в к-ых выделяются горючие пыли с нижних концентрационных пределах возгораемости > 65 г/м 3 . П-IIа - помещения, в которых обращаются твердые горючие вещества. П-III - пожароопасная зона вне помещения, к которой выделяются горючие ж-ти с т-ой вспышки более 61 ° С или горючие пыли с нижним концентрационным пределом возгораемости более 65 г/м 3 . Взрывоопасные зоны — помещения или часть его или вне помещения, где образуются взрывоопасные смеси как при нормальном протекании технологического процесса, так и в аварийных ситуациях. Для газов: В-I - помещения, в которых образуются горючие газы или пары ЛВЖ, способные образовывать взрывоопасные смеси в нормальном режиме работы. В-Iа - помещения, в которых образуются горючие газы или пары ЛВЖ, способные образовывать взрывоопасные смеси в аварийном режиме работы. В-Iб - зоны, аналогичные В-Iа, но процесс образования взрывооп. смесей в небольших кол-вах и работа с ними осущ-ся без открытого источника огня. В-Iв - зоны, аналогичные В-I, только процесс образования взрывоопасных смеси в небольших количествах и работа с ними осуществляется без открытого источника огня. В-Iг - зоны вне помещения (вокруг наружных эл. установок), в которых образуются горючие газы или пары ЛВЖ, способные образовывать взрывоопасные смеси в аварийном режиме работы. Для паров: В-II - взрывоопасная зона, которая имеет место при осуществлении операций технологического процесса при выделении горючих смесей при нормальном режиме работы. В-IIа - взрывоопасная зона, которая имеет место при осуществлении операций технологического процесса при выделении горючих смесей при аварийном режиме работы. Меры по пожарной профилактики · строительно-планировочные; · технические; · способы и средства тушения пожаров; · организационныё Строительно-планировочные определяются огнестойкостью зданий и сооружений (выбор материалов конструкций: сгораемые, несгораемые, трудносгораемые) и предел огнестойкости — это количество времени, в течение которого под воздействием огня не нарушается несущая способность строительных конструкций вплоть до появления первой трещины. Все строительные конструкции по пределу огнестойкости подразделяются на 8 степеней от 1/7 ч до 2ч. Для помещений ВЦ используются материалы с пределом стойкости от 1-5 степеней. В зависимости от степени огнестойкости наибольшие дополнительные расстояния от выходов для эвакуации при пожарах (5 степень — 50 м). Технические меры — это соблюдение противопожарных норм при эвакуации систем вентиляции, отопления, освещения, эл. обеспечения и т.д. — использование разнообразных защитных систем; — соблюдение параметров технологических процессов и режимов работы оборудования. Организационные меры — проведение обучения по пожарной безопасности, соблюдение мер по пожарной безопасности. Способы и средства тушения пожаров . 1. Снижение концентрации кислорода в воздухе; 2. Пониж. т-ры горюч. в-ва, ниже т-ры воспламенения. 3. Изоляция горючего вещества от окислителя. Огнегасительные вещества: вода, песок, пена, порошок, газообразные вещества, не поддерживающие горение (хладон), инертные газы, пар. Средства пожаротушения: 1 Ручные 1.1 огнетушители химической пены; 1.2 огнетушитель пенный; 1.3 огнетушитель порошковый; 1.4 огнетушитель углекислотный, бромэтиловый 2 Противопожарные системы 2.1 система водоснабжения; 2.2 пеногенератор 3 Системы автоматического пожаротушения с использованием ср-в автоматич. сигнализации 3.1 пожарный извещатель (тепловой, световой, дымовой, радиационный) 3.2 Для ВЦ используются тепловые датчики-извещатели типа ДТЛ, дымовые радиоизотопные типа РИД. 4 Cистема пожаротушения ручного действия (кнопочный извещатель). 5 Для ВЦ используются огнетушители углекислотные ОУ, ОА (создают струю распыленного бром этила) и системы автоматического газового пожаротушения, в которой используется хладон или фреон как огнегасительное средство. Для осуществления тушения загорания водой в системе автоматического пожаротушения используются устр-ва спринклеры и дренкеры . Их недостаток — распыление происходит на площади до 15 м 2 . Способ соединения датчиков в системе эл. пожарной сигнализации с приемной станцией м.б. — параллельным (лучевым); — последовательным (шлейфным).
Военизированная структура, которая подчиняется МВД. Ответственный директор, гл. инженер. В ведении гл. инженера находится пожаро-техническая комиссия, которую он возглавляет. Безопасность оборудования и производственные процессы . Эксплуатация любого вида оборудования связана потенциально с наличием тех или иных опасных или вредных производственных факторов. Основные направления создания безопасных и безвредных условий труда. Исключение человека из сферы труда обеспечивается при использовании РТК, создание которых требует высоко научно-технического потенциала на этапе как проектирования, так и на этапе изгот-я и обслуживания, отсюда значительные капитальные затраты. Требования безопасности при проектировании машин и механизмов . ГОСТ 12.2... ССБТ Требования направлены на обеспечение безопасности, надежности, удобства в эксплуатации. Безопасность машин опред. отсутствием возможности изменения параметров технологич. процесса или конструктивных параметров машин, что позволяет исключить возм-ть возникновения опасн. факторов. Надежность определяется вероятностью нарушения нормальной работы, что приводит к возникновению опасных факторов и чрезвычайных (аварийных) ситуаций. На этапе проектирования, надежность определяется правильным выбором конструктивных параметров, а также устройств автоматического управления и регулирования. Удобства эксплуатации определяются психофизиологическим состоянием обслуж. персонала. На этапе проектирования удобства в эксплуатации определяются правильным выбором дизайна машин и правильно-спроектированным РМ пользователя. ГОСТ 12.2.032-78 ССБТ. Рабочее место при выполнении работ сидя. Общие эргономические требования. ГОСТ 12.2.033-78 ССБТ. Рабочее место при выполнении работ стоя. Общие эргономические требования. Опасность локализована вокруг перемещающихся частей оборудования или вблизи действия источников различных видов излучения. Размеры опасных зон могут быть постоянные, когда стабильны расстояния между рабочими органами машины и переменно. Ср-ва защиты от воздействия опасных зон оборудования подразделяется на: коллективные и индивидуальные. 1 Коллективные 1.1 Оградительные 1.1.1 стационарные (несъемные); 1.1.2 подвижные (съемные); 1.1.3 переносные (временные) 2 Оградительные средства предназначены для исключения возможности попадания работника в опасную зону: зону ведущих частей, зону тепловых излучений, зону лазерного излучения и т.д. 3 Предохранительные 3.1 наличие слабого звена (плавкая вставка в предохранитель); 3.2 с автоматическим восстановлением кинематической цепи 4 Блокировочные 4.1 механические; 4.2 электрические; 4.3 фотоэлектрические; 4.4 радиационные; 4.5 гидравлические; 4.6 пневматические; 4.7 пневматические 5 Сигнализирующие 5.1 по назначению (оперативные, предупредительные, опознавательные средства); 5.2 по способу передачи информации 5.2.1 световая; 5.2.2 звуковая; 5.2.3 комбинированная 6 Сигнализирующие ср-ва предназначены для предупреждения и подачи сигнала в случае попадания работающего в опасную зону оборуд-я. 7 Средства защиты дистанционного управления 7.1 визуальная; 7.2 дистанционная 8 Предназначены для удаления раб. места персонала, работающего с органами, обеспечивающими наблюдение за процессами или осуществление управления за пределами опасной зоны. Средства специальной защиты, которые обеспечивают защиту систем вентиляции, отопления, освещения в опасных зонах оборудования. Задачи БЖД: 1. Идентификация (распознавание) опасностей с указанием их количественных характеристик и координат в 3-х мерном пространстве. 2. Определение средств защиты от опасностей на основе сопоставления затрат с выгодами, т.е. с т.з. экономической целесообразности. 3. Ликвидация отрицательных последствий (опасностей). Классификация и общие характеристики чрезвычайных ситуаций Чрезвычайная ситуация — внешне неожиданная, внезапно возникающая обстановка, к-ая хар-ся резким нарушением установившегося процесса, оказывающая значительное отрицательное влияние на жизнедеятельность людей, функционирование экономики, социальную сферу и окружающую среду. Классификация: 1. По принципам возникновения (стихийные бедствия, техногенные катастрофы, антропогенные катастрофы, социально-политические конфликты). 2. По масштабу распространения с учетом последствий. местные (локальные); объектные; региональные; национальные; глобальные. 3. По скорости распространения событий внезапные; умеренные; плавные (ползучие); быстро распространяющиеся. Последствия чрезвычайных ситуаций разнообразны: затопления, разрушения, радиоактивное заражения, и т.д. Условия возникновения ЧС. 1. Наличие потенциальных оп. и вр. производственных факторов при развитии тех или иных процессов. 2. Действие факторов риска · высвобождение энергии в тех или иных процессах; · наличие токсичных, биологически активных компонентов в процессах и т.д. 3. Размещение населения, а также среды обитания. Стадии развития ЧС. 1 этап. Стадия накопления тех или иных видов дефекта. Продолжительность: несколько секунд — десятки лет. 2 этап. Инициирование ЧС. 3 этап. Процесс развития ЧС, в результате которого происходит высвобождение факторов риска. 4 этап. Стадия затухания. Продолжительность: несколько секунд — десятки лет. Принципы обеспечения БЖД в ЧС. 1. Заблаговременная подготовка и осущ-е защитных мер на территории всей страны. Предполагает накопление средств защиты для обеспечения безопасности. 2. Деференцированный подход в определении характера, объема и сроков исполнения такого рода мер. 3. Комплек. подход к проведению защит. мер для создания безопасных и безвредных условий во всех сферах д-ти. Безопасность обеспечивается тремя способами защиты: эвакуация; использование средств индивидуальной защиты; использование средств коллективной защиты. Затраты на снижение риска аварий м.б. распределены: 1. На проектирование и изготовление систем безоп. 2. На подготовку персонала. 3. На совершенствование управления в ЧС. Методика измерения риска имеет 4 подхода. 1. Инженерный (в основе лежат данные статистики). Определение риска осуществляется построением деревьев отказа (напр., современная космонавтика). 2. Модельный (построение моделей взаимод-я опасных и вредных факторов с человеком и окруж. средой). 3. Экспертный (вероятности различных событий, связь между ними и последствия аварий, которые определяются опросом специалистов данной области, выступающих в роле экспертов). 4. Социологический (опрос различных групп населения). ОГЛАВЛЕНИЕ. TOC o '1-2' Введение . PAGEREF _Toc469922099 h Содержание и цель изучения БЖД. PAGEREF _Toc469922100 h Правовые и нормативно-технические основы обеспечения БЖД. PAGEREF _Toc469922101 h Травматизм и профзаболевания. PAGEREF _Toc469922102 h Учет и расследование несчастных случаев. PAGEREF _Toc469922103 h Методы исследования причин травматизма. PAGEREF _Toc469922104 h Оздоровление воздушной среды. PAGEREF _Toc469922105 h Нормативные содержания вредных веществ и микроклимата. PAGEREF _Toc469922106 h Методы и ср-ва контроля защиты воздушной среды. PAGEREF _Toc469922107 h Системы очистки воздуха 10 Электробезопасность. PAGEREF _Toc469922108 h Воздействие эл. тока на организм человека. PAGEREF _Toc469922109 h Причины поражения эл. током (напряж. Прикосновения и шаговое напряж.). PAGEREF _Toc469922110 h 11 Классификация помещений по опасности поражения эл. током (ПУЭ-85). PAGEREF _Toc469922111 h Методы и средства защиты: заземление, зануление, отключение и др. PAGEREF _Toc469922112 h Производственное освещение. PAGEREF _Toc469922113 h Физиологические характеристики зрения . PAGEREF _Toc469922114 h Свето-технические величины . PAGEREF _Toc469922115 h Естественное освещение . PAGEREF _Toc469922116 h Искусственное освещение . PAGEREF _Toc469922117 h Воздействие шума. 20 Звуковое восприятие человеком . PAGEREF _Toc469922118 h Нормирование шума . PAGEREF _Toc469922119 h Мероприятия по борьбе с шумом . PAGEREF _Toc469922120 h Опасность для человека . PAGEREF _Toc469922121 h Нормирование инфразвука . PAGEREF _Toc469922122 h Защитные мероприятия . PAGEREF _Toc469922123 h Приборы контроля . PAGEREF _Toc469922124 h Ультразвук. PAGEREF _Toc469922125 h Нормирование ультразвука . PAGEREF _Toc469922126 h Меры защиты. PAGEREF _Toc469922127 h Вибрация. PAGEREF _Toc469922128 h Основные характеристики . PAGEREF _Toc469922129 h Нормирование вибрации . PAGEREF _Toc469922130 h Методы снижения вибрации . PAGEREF _Toc469922131 h Ультрафиолетовое излучение. PAGEREF _Toc469922133 h Нормирование УФ излучения . PAGEREF _Toc469922134 h Меры защиты ...... PAGEREF _Toc469922135 h Средства индивидуальной защиты . PAGEREF _Toc469922136 h Опасные и вредные факторы при эксплуатации лазеров. PAGEREF _Toc469922137 h Вредные воздействия лазерного излучения. PAGEREF _Toc469922138 h Нормирование лазерного излучения. PAGEREF _Toc469922139 h Меры защиты от воздействия лазерного излучения . PAGEREF _Toc469922140 h Инфракрасное излучение . PAGEREF _Toc469922141 h Нормирование ИФ излучения. PAGEREF _Toc469922142 h Защита от воздействия ИФ излучения. PAGEREF _Toc469922143 h Приборы контроля ИФ . PAGEREF _Toc469922144 h Электромагнитное поле. PAGEREF _Toc469922145 h Характеристики эл.магнитного поля. PAGEREF _Toc469922146 h Вредное воздействие эл. магнитных полей . PAGEREF _Toc469922147 h Нормирование эл. магн. полей . PAGEREF _Toc469922148 h Мероприятия по защите от воздействия электромагнитных полей. PAGEREF _Toc469922149 h Ионизирующее излучение. PAGEREF _Toc469922150 h Характеристики ионизирующего излучения . PAGEREF _Toc469922151 h Виды и источники ИИ в бытовой, произв. и окружающей среде. PAGEREF _Toc469922152 h Биологическое действие геонизир. изл. PAGEREF _Toc469922153 h Нормирование ИИ . PAGEREF _Toc469922154 h Методы защиты от ионизирующих излучений . PAGEREF _Toc469922155 h Приборы радиационного контроля. 32 Пожарная безопасность. 32 Классификация помещений и зданий по степени взрывопожарноопасности. PAGEREF _Toc469922157 h Причины возникновения пожаров, связанные со специальностью студентов . PAGEREF _Toc469922158 h Классификация взрывои пожароопасных зон помещения в соотв-вии с ПУЭ . PAGEREF _Toc469922159 h Меры по пожарной профилактики . PAGEREF _Toc469922160 h Способы и средства тушения пожаров . PAGEREF _Toc469922161 h Безопасность оборудования и производственные процессы. PAGEREF _Toc469922162 h Требования безопасности при проектировании машин и механизмов . PAGEREF _Toc469922163 h Задачи БЖД. 39 Классификация и общие характеристики чрезвычайных ситуаций. PAGEREF _Toc469922166 h Сочинский институт экономики и информационных технологий. |