Дрозофила-объект научных исследований

Дрозофила-объект научных исследований

Размеры мушек составляют только 2-3,5 мм.

Однако это крохотное создание вошло в историю науки, а следовательно, и в историю человечества как бесценный объект генетических исследований.

В русский язык уже прочно вошло их на звание - дрозофила, в точности повторяющее латинское наименование рода мух семейства плодовых мушек Drosophilia. На земном шаре существует свыше 1000 видов этих прелестных существ, и наибольшее распространение они получили в субтропиках и тропиках - на одних только Гавайских островах обитает более 300 видов дрозофилы. На территории же нашей страны их на порядок меньше.

Наиболее используемым в науке видом является Drosophilia melanogaster. Сами плодовые мушки питаются соком растений, гниющими растительными остатками, а личинки - микроорганизмами. Их жизненный цикл очень короток, и развитие от яйца до мухи занимает в среднем 10 суток. Можно получить массу удовольствий, часами разглядывая эти крошечные создания под микроскопом с небольшим увеличением, лучше под бинокулярным микроскопом, позволяющим получать объемное изображение. В нем легко разглядеть детали строения переливающихся крылышек, удивительно красиво посаженные глазки, прямые или вилочкообразные щетинки и многое, многое другое. Малые размеры, плодовитость и ряд других преимуществ перед большинством живых организмов на долгое время сделали дрозофилу главным объектом генетики, и не один нобелевский лауреат кроме своего могучего интеллекта обязан и ей своими высшими научными достижениями. Одним из нобелевских лауреатов, которому дрозофилы оказали неоценимую услугу, был замечательный американский зоолог и генетик Томас Хант Морган.

Именно его имя использовалось для шельмования отечественных биологов в период 'лысенковщины', когда были введены ругательные тогда слова вейсманисты-морганисты, менделисты-морганисты или просто морганисты.

Морган родился в 1866 г. в семье дипломата. Мать его была внучкой композитора Фрэнсиса Скопа Ли сочинившего американский национальный гимн. Не испытывая влияния биологов, Томас с детства интересовался биологическими объектами - он приносил в дом окаменелости, собрал коллекцию различных птиц, а первые свои научные исследования он выполнил, используя морских пауков. В 1902 г. американский биолог Уильям С. Саттон высказал предположение, что единицы наследственности (гены) размещаются в хромосомах.

Морган решил его опровергнуть, считая, что хромосомы не являются носителями наследственности, а возникают на ранних стадиях развития.

Теперь мы уже знаем, что в конце концов он изменил свое мнение на противоположное, доказав прямую роль хромосом в процессах наследования макроскопических признаков живых организмов. Для выполнения этой работы в 1908 г. лучшего объекта, чем дрозофила, Морган найти не смог. Ему понадобилось вырастить и изучить несколько миллионов мушек, чтобы прийти к твердому убеждению, что хромосомы напрямую связаны с наследственностью. И это только один ученый.

Дрозофилу использовали наверняка не менее нескольких сотен генетиков, и, следовательно, число мушек, понадобившихся науке, сравнимо с численностью людей на земном шаре.

Результаты некоторых экспериментов Моргана с дрозофилой, казалось, противоречили менделевскому закону независимого наследования, согласно которому каждый организм обладает генами, контролирующими тот или иной признак, и наследование одного признака, например пола, не зависит от наследования другого - например цвета глаз.

Оказалось, что некоторые признаки все же связаны между собой, т.е. их сочетание встречается у потомков чем следует из законов Менделя .Так, например, белоглазость - мутантный признак - почти всегда встречается только у самцов. Это явление Морган назвал сцеплением с полом.

Тенденция к сцеплению подсказало ученому, что гены, по-видимому, располагаются на одной и той же хромосоме в тесной близости друг к другу. Было обнаружено что таких сцепленных групп у дроздофилы - четыре, и эта величина в точности совпала числом пар хромосом Свои эксперименты Морган проводил в помещении, которое он называл мушиной комнатой. В 19 14 г. в эту комнату явился студент-выпускник Герман Джозеф Меллер, которому впоследствии на той же дрозофиле суждено было открыть мутации под действием рентгеновского излучения. А пока Морган, Меллер и другие сотрудники старались ответить на вопрос, почему гены, расположенные на одной и той же хромосоме, наследовались реже, чем этого можно ожидать. Они предположили, что хромосомы, собранные в пары, могут расщепляться и обмениваться своими участками, генами, и назвали этот процесс кроссинговером.

Предположение основывалось на обнаруженном бельгийским ученым Ф.А.Янсеном в 1909 г. (с помощью светового микроскопа) тесном переплетении хромосом.

Морган рассуждал так: чем больше расстояние между двумя генами в одной хромосоме, тем больше вероятность разрыва. Если это верно, то гены не будут наследоваться вместе, и наоборот - гены, расположенные в хромосоме близко друг от друга, имеют меньше шансов быть разделенными, т.е. верна гипотеза американского генетика Альфреда Генри Стертеванта о том, что сцепление двух генов в хромосоме определяется величиной линейного расстояния между ними. Иными словами, была высказана замечательная мысль, что, гены расположены вдоль хромосомы линейно, т.е. представляют собой линейную матрицу.

Используя данные о частотах кроссинговера, Морган первым начал составлять хромосомные (или генетические) карты, где в линейной последовательности указывались гены, ответственные за тот или иной макроскопический признак (цвет глаз или брюшка, формой щетинок или крыльев и т.д.). Так, если частота обмена между двумя генами равна 5, то это означает, что они расположены в одной и той же хромосоме на расстоянии 5 условных линейных единиц. В дальнейшем имя Моргана, как ранее имена ряда других выдающихся ученых, например Дальтона, Ньютона, Джоуля, Ангстрема и других, стали использовать для наименования этих единиц, и в настоящее время они называются морганидами. В 1933 г. Т. X. Моргану была присуждена Нобелевская премия по физиологии и медицине за открытия, связанные с ролью хромосом в наследственности.

Морган изучал в основном самопроизвольно возникающие мутации. Но они могут быть вызваны и искусственно, например путем физических или химических воздействий.

Первым физическим мутагенным фактором было рентгеновское излучение. Его использовал ученик Моргана Герман Меллер.

Химический мутагенез еще в 30-е гг. открыл наш соотечественник Иосиф Абрамович Рапопорт, герой Великой Отечественной войны (он дважды был представлен к званию Героя Советского Союза) и настоящий герой науки во времена борьбы с 'лысенковщиной'. Однако опубликовать свои результаты о мутагенном действии формальдегида и других карбонильных соединений он смог только в 1946 г. одновременно с шотландкой Шарлоттой Ауэрбах, сообщившей в научной печати об аналогичных свойствах иприта. И опять объектом исследования было неприметная мушка.

Ричард Эксел ( Richard Axel ) и его коллеги изучили функции двух десятков генов, ответственных за восприятие вкуса у дрозофилы. Об этом - статья в Cell от 9 марта.

Группа Эксела продолжила исследования молекулярных биологов из Йельского университета Питера Клайна и Джона Карлсона, идентифицировавших комплекс генов под общим названием GR . Эти гены отвечают за формирование вкусовых рецепторов дрозофил: кодируемые ими белки присутствуют преимущественно в хоботках, ножках и усиках насекомых. Эксел и его коллеги обнаружили большое сходство между GR и обонятельными генами дрозофилы. Это позволяет предположить, что у отдаленных предков мух за распознавание вкуса и запаха отвечали одни и те же гены, и лишь в процессе эволюции постепенно произошло их разделение на 'вкусовые' и 'обонятельные'. Исследователи считают, что дальнейшее изучение белков, отвечающих за распознавание вкуса и запаха, может привести к революции в сельском хозяйстве.

Разобравшись в структуре молекул; можно будет создавать экологически чистые препараты, способные сделать сельскохозяйственные культуры невкусными или дурно пахнущими для насекомых-вредителей.

Различия в организации эуи гетерохроматина дрозофилы.

Наиболее существенные свойства эуи гетерохромати на, характеризующие различия в их организации, при ведены в табл. 1. Даже первого взгляда на эту таблицу достаточно чтобы увидеть, насколько эуи гетерохроматин различны по строению и функционированию.

Некоторые из свойств очень интересны, и мы рассмотрим их боле детально.

Эффект положения мозаичного типа Одним из удивительных свойств гетерохроматина является его способность передавать компактизованное состояние на эухроматиновые фрагменты хромосом, перенесенные в его соседство с помощью хромосомных перестроек (рис. 2). Гены в перенесенном фрагменте инактивируются, хотя и не во всех клетках одного и того же органа.

Например, если ген w + у дрозофилы, обеспечивающий нормальный красный цвет глаз у мухи, переносится с помощью инверсии In ( l ) w m 4 в новое положение - в окружение прицентромерного гетерохроматина, в части клеток он инактивируется. В результате на фоне нормально окрашенных участков глаза будут появляться пятна из неокрашенных белых клеток, в которых ген w + инактивирован - образуется как бы мозаика из окрашенных и неокрашенных клеток (см. рис. 2). Это явление; называемое эффектом положения мозаичного типа, в настоящее время изучают весьма интенсивно, поскольку исследователи полагают, что оно является удобной моделью для понимания генетического контроля механизмов компактизации - декомпактизации хроматина. Рис. 2. Схема, иллюстрирующая эффект положения мозаичного типа - генетическую инактивацию эухроматинового фрагмента хромосомы, содержащего ген w + , перенесенного в соседство гетерохроматина Во всех этих работах было сделано сенсационное открытие: наследственность можно преднамеренно изменять в лабораторных условиях.

Последнюю точку в исследовании хромосом и генов как линейных матриц, по-видимому, поставил еще один наш соотечественник, лауреат Кимберовской премии (премии по генетике, дополняющей Нобелевские по физиологии и медицине) Николай Владимирович Тимофеев-Ресовский, который совместно с немецкими учеными Клаусом Циммерманом и Максом Дельбрюком (еще одним нобелевским лауреатом) в 30-х гг. определил размер гена. И уже не в условных единицах, а в обычных единицах длины (например, в нанометрах). Полученные величины великолепно совпали с более поздними данными о размерах ДНК. Гены Y-хромосомы. Еще на заре рождения генетики, в 1916 году, американский ученый К. Бриджес установил, что экспериментально полученные самцы дрозофилы без Y-хромосомы (то есть ХО в отличие от нормальных самцов XY ) имеют нормальную жизнеспособность и строение всех органов, но они полностью стерильны. В последующих экспериментах было показано, что Y-хромосома дрозофилы содержит только девять генов, из которых шесть влияют на способность самцов оставлять потомство (фертильность). Оставшиеся три гена - это bobbed ( bb ), серия или кластер генов, кодирующих рибосомную РНК и активность которых приводит к образованию ядрышка (нужно упомянуть, что второй ядрышкообразующий ген bb у дрозофилы находится также в гетерохроматиновом районе, но Х-хромосомы). Ген bb, состоящий из повторенных фрагментов, занимает около 5% всей ДН К Y -хромосомы. В пределах гена bb находятся участки, контролирующие процесс коньюгации хромосом в мейозе. Дело в том, что в мейозе спариваются гомологичные хромосомы за счет конъюгации гомологичных последовательностей нуклеотидов ДНК. Поскольку половые Хи Y -хромосомы морфологически и функционально совершенно различны, вопрос о механизмах спаривания этих элементов в мейотической профазе I достаточно актуален.

Начиная с 1930-х годов накапливались данные о наличии участков спаривания в гетерохроматине Х-хромосомы, в районе локализации гена bobbed . Их назвали сайтами collohores ( col ). В 1990 году удалось показать, что ответственными за опознание Хи Y-хромосом и их последующую конъюгацию и расхождение в мейозе являются короткие последовательности нуклеотидов длиной в 240 п.н., расположенные в промежутках между генами рибосомной РНК, как в Х-, так и Yхромосоме.

Участок локализации локуса со/ занимает в Yхромосоме около 7% ее длины.

Удаление bb с помощью хромосомных нехваток (делений) полностью нарушает правильную конъюгацию половых хромосом. Еще один ген - crystal ( cry ) влияет на поведение хромосом в мейозе и правильное формирование гамет.

Разрывы участка хромосом, занимаемого этим геном, не приводят к развитию каких-либо фенотипических изменений у самцов дрозофил.

Однако при полном или частичном удалении этого участка с помощью делений в первичных сперматоцитах, в клетках, из которых образуются сперматозоиды, появляются белковые кристаллы, а во время мейоза нарушается расщепление хромосом.

Интересно отметить, что есть еще один ген, расположенный в эухроматине Х-хромосомы, - Stellate ( Ste ), который взаимодействует с геном crystal . При этом, если в Х-хромосоме присутствует нормальный аллель гена Stellate (Ste + ), кристаллы имеют игловидную форму, если мутантный Ste - - они приобретают вид звезды. Ген Ste + был клонирован, и в результате анализа ДНК было показано , что он содержит тандемно повторенную (до 200 раз) последовательность длиной 1250 п.н.

Нужная степень повторенности этого фрагмента соответствует аллелю Ste + (игловидные кристаллы у Ste + /0 самцов, то есть тех, которые не имеют Y-хромосомы). Высокая степень повторенности приводит к образованию звездовидных кристаллов у Ste - /О. Транскрипты гена Ste - находят в семенниках. Ген Ste + кодирует бета-субъединицу фермента казеин-киназы-2. Этот белок, по-видимому, вовлечен в процессы конденсации хромосом и их последующего расхождения по гаметам.

Присутствие нормального аллеля гена crystal ингибирует накопление РНК гена Ste + . По существующим представлениям сгу + контролирует активность гена Ste + : удаление Y-хромосомы приводит к сверхпродукции Ste + - PHK , в результате чего избыток белка этого гена кристаллизуется в сперматоцитах и нарушает их функциональные возможности, что и приводит к стерильности. У D . melanogaster найдено шесть факторов фертильности самцов ( kl -5, kl -3, kl -2, kl -1, ks - I и ks -2 нарис. З) Из них три очень больших: kl-5, kl-3 и ks -1 — занимают по 10% Y-хромосом каждый, то есть примерно по 4000 т.п.н.

Интересно проявляется активность факторов фертильности у дрозофилы. В 1961 году три немецких ученых ( G . F . Меуег, О. Hess , W . Beermann ) описали особые нитевидные структуры в ядрах развивающихся сперма тоцитов D . melanogaster , которые впоследствии стал называть петлями (рис. 5). Такие структуры нашли фактически у всех 50 изучаемых видов дрозофилы.

Показано, что петли - это декомпактизованные, а следовательно, активные участки Y-хромосом. В них синтезируется РНК и накапливаются белки.

Каждая петля ядре данного вида дрозофилы имеет характерные размеры, ультраструктуру и внешний вид (см. рис. 5). У других видов морфология набора петель другая. О том, что петли формируются из материала Y - xp омосомы, свидетельствуют следующие факты. 1. У самцов, не имеющих Y-хромосомы (ХО), нет и петель, а у особей с двумя Y-хромосомами ( XYY ) они присутствуют в двойном наборе. Если происходит делеция части Y-хромосомы, обнаруживаются не все петли. В линиях с дупликациями частей Y-хромосом число петель соответственно увеличивается. 2. У межвидовых гибридов морфология петель такая же, как и у вида - донора Y-хромосомы. Более детальный анализ показал, что гены ферментильности самцов локализованы в петлях. 1.Сначала были установлены корреляции между числом генов и петель. Затем, используя хромосомные – перестройки, установили прямое соответствие в их локализации. Так, фактор kl -5 соответствует петле А, поскольку и петля, и фактор располагаются между точками разрывов одних и тех же перестроек (см. рис. 3). Фактор kl - 3 расположен в петле B , ks -1 - в петле С. 2. При удалении делециями хотя бы одной петли самец становится стерильным. После получения клонов ДНК из Y-хромосом дрозофил появилась возможность анализа молекулярной организации этой хромосомы. Общая длина петель составляет около 1000 мкм, или 1/12 всей длины ДНК в Y-хромосоме.

Функции остальных 11/12 пока неизвестны. В состав ДНК Y-хромосомы входят два типа повторенных последовательностей. Рис. 3. Общий вид ядра спермотоцита у самца Drosofilia hydei (из [1], с.62). TR , P , THD , CL , THP , NS – названия петель, С – центромера, N - ядрышко Вывод: Таким образом, муха Дрозофила играет большую роль, как объект генетических исследований.

Исследование ее генов принесло известность многим генетикам.

Изучая гены Дрозофилы, ученые открыли много законов, таких как: закон Моргана - сцепленного наследования генов и закон Менделя. К тому же у Дрозофилы нашли много различных генов, отвечающих за наследование некоторых признаков. В последствии многие из этих открытий применялись к людям. И если бы не было этих мух, ученые еще долго бы не открыли законы наследования у людей.

 

Категории

Технология

История экономических учений

Менеджмент (Теория управления и организации)

Философия

Химия

Административное право

Международные экономические и валютно-кредитные отношения

Математика

Бухгалтерский учет

Микроэкономика, экономика предприятия, предпринимательство

Радиоэлектроника

Физика

Теория систем управления

Маркетинг, товароведение, реклама

Банковское дело и кредитование

Право

Политология, Политистория

Охрана природы, Экология, Природопользование

Педагогика

Психология, Общение, Человек

Медицина

Ветеринария

Теория государства и права

Физкультура и Спорт

Сельское хозяйство

Уголовное право

Техника

Программирование, Базы данных

Программное обеспечение

Биология

Уголовное и уголовно-исполнительное право

Архитектура

История

Здоровье

Религия

Социология

Материаловедение

Криминалистика и криминология

Государственное регулирование, Таможня, Налоги

Экономическая теория, политэкономия, макроэкономика

Металлургия

Биржевое дело

Компьютерные сети

Уголовный процесс

Римское право

География, Экономическая география

Разное

Ценные бумаги

История государства и права зарубежных стран

Литература, Лингвистика

Историческая личность

Военная кафедра

История отечественного государства и права

Транспорт

Авиация

Астрономия

Космонавтика

Гражданская оборона

Подобные работы

Ресничные черви

echo "Некоторые черви имеют органы дыхания и сосудистую систему, глисты дышат и питаются поверхностью кожи. Некоторые черви рождают живых детенышей, многие несут яйца, иные размножаются делением. Мн

Классификация и жизненные циклы диатомовых

echo "Иногда штрихи взаимно пересекаются. На створках панциря большинства пеннатных диатомей имеется шов в виде пары сквозных щелей, каждая из которых называется ветвью шва. Швы имеют различную длину,

Эволюция биологических механизмов запасания энергии

echo "Моделируя атмосферу древнейшей Земли. К. Саган пришел к выводу о существовании в ней 'окна' в области 240—290 нм, прозрачного для ультрафиолетового света, поскольку основные простые компоненты э

Интерстициальные клетки Кэйждела

echo "Ультраструктура соединительных щелей сохраняется. Интенсивная иллюминация без преинкубации МС приводит к утрате медленных волн, при этом не нарушается ультраструктура в препаратах ИКК. В препар

Ферменты

echo "История открытия ИСТОРИЯ ОТКРЫТИЯ . . Науку составляет не только достигнутый результат, но и путь ведущий к результату,- результату путь от незнания к знанию, медленный, извилистый, скачкообразн

Методы исследования в цитологии

echo "Впервые обобщенные сведения о строении клеток были собраны в книгу Ж.-Б. Карнуа «Биология клетки», вышедшей в 1884 году. Современная цитология изучает строение клеток, их функционирование как э

Летучие мыши

echo "Вечерницы держатся преимущественно в старых обширных местах, где охотятся за насекомыми. Вылетая иногда за несколько часов до заката, они носятся вокруг вершин высоких деревьев и так быстро и с

Основной курс биологии 8 класс

echo "Буквами: А;В;С;Д; и т.д. Вит. С содержится в шиповнике и.т.д. Человеку нужно получать в день 50-78 мг. вит С. При нехватке образуется болезнь «цинга». Вит. А содержится в животной и растительно